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Abstract Phase-field models based on multiple order

parameters are used extensively to study grain growth in

polycrystalline materials. However, if simulations are to be

carried out using experimentally obtained microstructures

as the initial condition, and the resultant microstructures

are to be carefully compared with those obtained from

experiments, then the parameters used in the numerical

simulations need to be benchmarked with analytical solu-

tions. Furthermore, the models themselves need to be

modified to incorporate the dependence of grain boundary

energy on misorientation across the boundary as well as the

anisotropy in the boundary energy for any given misori-

entation that stems from the planes of different grains that

make up the boundary. In this article, we address both these

issues and present some preliminary results from our 2D

and 3D simulations.

Introduction

Discovered in the mid-eighteenth century, grain boundaries

are probably the longest known crystalline defects [1]. They

play a key role in determining the structure and properties of

metals, alloys, semiconductors, and ceramics, which are

some of the materials of industrial importance [1–5]. Further,

the structure and properties of grain boundaries are also of

interest by themselves from the point of view of a funda-

mental understanding of materials and their microstructure

[6]. Hence, grain boundaries are being extensively studied

using experiments, models, and numerical simulations.

These studies are far too varied, detailed, and numerous to be

summarized here; see the excellent monographs of Sutton

and Balluffi [2], Gottstein and Shvindlerman [1], Humphreys

and Heatherly [3], and so on.

It is well known that in polycrystalline samples held at

high enough temperatures the microstructure evolves in

such a way that the overall average grain size increases

while the number of grains in the system decreases. This

process is known as grain growth, and is driven by the

energy and curvature of the grain boundary (GB). In par-

ticular, in 2D, assuming (a) isotropic GB energies and (b)

local equilibrium at triple junctions, the rate of growth of a

grain can be shown to be purely driven by its topology,

namely, the number of its sides [7, 8]; in 3D, under the

same assumptions, the growth rate is no longer purely

topological but is more involved [9].

Grain growth in a generic microstructure typically

involves events such as the disappearance of grains,

merging of boundaries, face switching events, and other

such topological singularities. Hence, among the numerical

studies, phase field models, which are ideal for simulations

at mesoscopic length scales [10] and do not explicitly track

the interface (and therefore naturally account for the

topological singularities), are ideally suited for the study of

grain growth and have been used extensively in the past

decade; see the review by Chen [11]. A majority of these

phase field models also assume isotropic interfacial ener-

gies. However, in most materials of industrial importance,

the GB energies depend both on the misorientation across

the boundary and the planes of the grains that make up the

boundary (anisotropy). Therefore, we wish to modify the
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existing phase field models to incorporate the misorienta-

tion and anisotropy dependence of GB energy. Along the

way, we also wish to benchmark the existing phase field

models by comparing the results obtained from them using

model systems with the analytical results in order to

identify the range of parameters for the phase field for

which the results are reliable.

In this article, in the following section we describe

(albeit very briefly) our modified phase field model; the

details can be found elsewhere [12]. Then, in sections

‘‘Effect of boundary thickness‘‘ and ‘‘Effect of triple point

junctions coupled with boundary thickness,’’ we present

some of the benchmark studies that we have carried out in

2D, which indicate the effect of boundary thickness and

triple junctions on grain growth. These benchmark studies

also give us a couple of rules of thumb to be aware of while

using experimentally measured grain structures in simula-

tions, or while comparing the numerical results with

experimental ones. Finally, in section ‘‘Effect of misori-

entation/anisotropy on kinetics and morphology,‘‘ we

examine the effect of misorientation on GB energy in 1D

and report some of the preliminary results on both 2D and

3D systems which clearly demonstrate the effects of

anisotropy and misorientation on grain growth, and the

article is ended with a brief summary.

Formulation

In phase field models the microstructure is described using

field variables known as order parameters. In particular, for

describing a polycrystalline microstructure a multi-order

parameter model is used; where for each distinct grain

orientation, p, a corresponding order parameter gp is

assigned. Thus, if there are N distinct orientations in a

given system a total number of N-order parameters are

needed; these N-order parameters can be ordered to form

an N-vector field. The order parameters are continuous

functions bounded between zero and unity. For any given

grain with an orientation, M, the Mth component of the

N-vector is unity and all the other components are zero. In

those regions where grains with different orientations meet,

more than one component of the N-vector take on values

between zero and unity; for example, at a GB there are two

non-zero components, three at triple point junctions, four at

quadruple point junctions, and so on.

Given such a description of the polycrystalline micro-

structure, the free energy is typically written as a function of

the order parameters and their gradients, assuming (a) that

the GB energies are independent of the misorientation across

the boundary, and (b) that the GB energy is isotropic [13, 14].

However, in this article, we report the results obtained using

a modified model in which the GB energy is anisotropic and

is dependent on the misorientation. The misorientation

dependence is incorporated by making the gradient energy

coefficient dependent on the order parameters and orienta-

tion of the grains. The anisotropy is incorporated using

higher-order gradients and their associated tensor gradient

energy coefficients in the free energy functional.

The fourth-rank tensor gradient energy coefficients that

are used are the same as those used (in the context of pre-

cipitation) by Abinandanan and Haider [15]. However, in

this implementation, the tensor terms must also be trans-

formed to the computational frame of reference since we are

dealing with grains of differing orientations. The coordinate

transformations on the tensor coefficients, as well as the

calculation of misorientation that is consistent with the

underlying cubic symmetry of the crystallites, are achieved

using quaternions which are associated with each orienta-

tion, and hence with each order parameter. The details of the

algebra involving the quaternions are reported elsewhere

[12]. The modifications in our model system are from two

differences. The first coming from the addition of an

anisotropy term, fa, in the free energy, and the other from

taking the constant gradient energy coefficient, jp, and

allowing it to be a function of both the misorientation and

nonzero-order parameters at each respective grid position.

We take the free energy, F, to be:

F ¼
Z

V

fb þ fm þ fa½ �dV; ð1Þ

where V is the volume of the system, fb the bulk-free

energy density, fm the energy due to the misorientation

between grains, and fa is the energy that will change with

the orientation of the GB plane.

The bulk-free energy is given by the following expres-

sion [13]:

fbðg1; g2; . . .; gp; . . .; gNÞ

¼ l
XN

i¼1

� a

2
g2

i þ
b

4
g4

i

� �
þ c

XN

i¼1

XN

j 6¼i

g2
i g

2
j

 !
; ð2Þ

where l, a, b, and c are constants. The constraint c [ b/2

should be satisfied to make sure that there are N degenerate

minima associated with the N unit vectors located at:

ðg1; g2; . . .; gNÞ ¼ ð1; 0; . . .; 0Þ; . . .; ð0; 0; . . .; 1Þ [16]. The

constant l is used to adjust the interface thickness by

modifying the height of the energy barrier between the

minima such that the thickness of the boundary is pro-

portional to the magnitude of l [17].

The misorientation energy is given by:

fm ¼
XN

p¼1

jpjrgpj
2; ð3Þ

where jp is the scalar gradient energy coefficient which is

both a function of the order parameters and the grain
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orientations. For a certain model of the GB energy on

misorientation jp can be expressed as:

jp ¼ j0 þ
XN

q 6¼p;q¼1

gqjhpqj; ð4Þ

where j0 is a constant and hpq, in radians, is the misori-

entation across the GB corresponding to two grains with

order parameters p and q. For this particular model, the GB

energy scales linearly with misorientation, but can be

modified to capture Read-Shockley type behavior [15].

The anisotropic energy is given by the following

expression:

fa ¼
XN

p¼1

 
ap

ijkl

ogp

oxi

� �
ogp

oxj

� �
ogp

oxk

� �
ogp

oxl

� �

þ bp
ijkl

o2gp

oxioxj

 !
ogp

oxk

� �
ogp

oxl

� �

þ cp
ijkl

o2gp

oxioxj

 !
o2gp

oxkoxl

 !!
; ð5Þ

where aijkl
p , bijkl

p , and cijkl
p are the tensor coefficients, and are

identical to those used by Abinandanan and Haider [15],

but rotated to the computational frame of reference from

the principle coordinate system of the pth grain. By

assuming cubic anisotropy cijkl
p involves only three

independent coefficients, two of which are always found

in linear combination. Therefore the tensor can be

completely defined with two parameters, which we

introduce as caniso and ciso for the tensor cijkl
p . They are

defined in the principle coordinate frame of reference

(which is equivalent in both 2D and 3D) as:

caniso ¼ c1111 � c1122 � 2c1212; ð6Þ
ciso ¼ c1122 þ 2c1212; ð7Þ

where caniso is the term which specifies the amount of

anisotropy in the system and ciso is a term chosen to insure

that the system is stable against large wave number fluc-

tuations [5].

Given the free energy the order parameters are evolved

using the Allen–Cahn (or time dependent Ginsburg-Lan-

dau) equation. This is because the order parameters

corresponding to the grain orientations are non-conserved

quantities. Thus, the spatiotemporal evolution is given by

ogp

ot
¼ �Lp

dF

dgp

 !
; ðp ¼ 1; . . . NÞ; ð8Þ

where Lp is the kinetic coefficient corresponding to the

order parameter gp, and d/dgp is the variational derivative

with respect to gp. The detailed expressions for the varia-

tional derivatives are straightforward to obtain, and are

reported elsewhere [12].

Numerical implementation

In all the simulations reported in this article, for the sake of

simplicity, the tensor coefficients aijkl
p and bijkl

p are assumed

to be identically zero. Furthermore, for the 2D simulations

reported in sections ‘‘Effect of boundary thickness‘‘ and

‘‘Effect of triple point junctions coupled with boundary

thickness,’’ we also assume that the gradient energy coef-

ficient, jp, is a constant and the fourth-rank tensor

coefficients, cijkl
p , are identically zero. In other words, the

GB energy is isotropic and is independent of the order

parameters and the orientations of the grains. The explicit

Forward Euler finite differencing scheme (for the 2D

simulations), and semi-implicit Fourier spectral method

(for the 3D simulations) are used to integrate Eq. 8. The

two different methods are used in order to show that the

model is applicable to a variety of different techniques as

well as a manner in which to check between the two dif-

ferent implementations. For the finite difference scheme,

the Laplacian is solved using a second-order accurate

central second differencing formula; the details and stencils

used for the anisotropy and misorientation are discussed

elsewhere [18]. Furthermore, the details of the semi-

implicit Fourier spectral implementation can be found in

reference [12]. All simulations are carried out assuming

periodic boundary conditions.

For multi-order parameter models of the type described

above, when the system dimensions, size, and the number

of distinct grain orientations are large, the numerical sim-

ulations can both be processor and memory intensive.

Usually, in such cases, a sparse matrix algorithm becomes

necessary and is implemented [18–22]. However, for the

results reported in this article such algorithms are

unnecessary.

Results and discussion

In this section, a brief description of the analytical sharp-

interface result for growth rates of grains with isotropic

boundary energy in 2D is revisited. Next, we report the

results from our 2D studies on the effect of the boundary

thickness and triple junctions on grain growth. These

results are then used to benchmark and identify parameter

regimes in which the results from the phase field model

deviates from those obtained using the sharp interface

models. Next we use these results to make sure our inter-

faces are properly resolved in the investigation of adding

misorientation and anisotropy into the system. With the

modified phase field model we then study the effects of

varying the misorientation between grains as well as

the parameters caniso and ciso which are used to modify

the anisotropy of the system. Finally, we present some
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preliminary results on 3D systems that show the impor-

tance of both misorientation and anisotropy on the resulting

grain shapes and that the model is easily extendable to 3D.

2D von Neumann–Mullins relation

In the following section, we present results from our 2D

simulation and compare them with the corresponding

analytical ones. Hence, before presenting the numerical

results, we wish to summarize the analytical results on

grain growth in 2D, specifically for systems with isotropic

boundary energy (with and without triple point junctions).

In 2D, the kinetics of grain growth in systems with

isotropic boundary energy is solely determined by the

topology of the grains. This result, known as the von

Neumann–Mullins relation, is obtained by using the well-

known fact that GB motion is driven by the mean curva-

ture. Explicitly, the boundary moves with a velocity, v,

which is proportional to the mean curvature:

v ¼ �LrH; ð9Þ

where L is the (constant) isotropic boundary mobility, r the

(constant) isotropic boundary energy, and H is the mean

curvature of the boundary. The minus sign indicates that

the interface moves toward its center of curvature. Using

this relation, the local expression for the change in area, A,

of a grain can be calculated by integrating the velocity

along the GB:

dA

dt
¼
I

GB

vdl ¼ �
I

GB

LrHdl: ð10Þ

The mean curvature, H, of the boundary is related to the

tangent angle, w, of the boundary and the boundary

element, l, as follows: H = dw/dl [1]. Hence,

dA

dt
¼ �Lr

I
GB

dw
dl

dl ¼ �Lr
Z 2p

0

dw: ð11Þ

For an enclosed continuous surface the line integral

would be 2p. However, since there are discontinuities

around the triple points, with a turning angle equal to

ni = p/3 for a system with isotropic boundary energies,

this value must be subtracted from 2p for each triple point

junction present. A schematic of this discontinuous change

in curvature around the triple point junctions for an isolated

grain is shown in Fig. 1. Hence, evaluating the integral in

Eq. 11 we obtain

dA

dt
¼ �Lr 2p�

Xn

i¼1

ni

 !
¼ �Lr 2p� np

3

� �

¼ Lrp
3

n� 6ð Þ: ð12Þ

Thus, from the expression above, it is clear that one

need only know the number of triple points, or equivalently

sides of a grain, to calculate the rate of area change of that

grain and this rate is independent of its corresponding area

or perimeter. Secondly, it shows that the area of a grain

scales linearly with time. It is also obvious that a grain with

n = 6 sides does not grow or shrink, while ones with more

than six sides grow and those with less than six sides

shrink.

Effect of boundary thickness

In the following simulations, we have used a = b = c =

Lp = jp = 1 and Dt = 0.01 for the cases where Dx =

Dy = 0.5 or Dx = Dy = 1. In cases where the interface is

very sharp, a finer spatial discretization is necessary

(Dx = Dy \ 0.5 and hence a Dt smaller than 0.01) to make

sure that there are enough points through the interface

and to avoid numerical artifacts such as grid-imposed

anisotropy.

In this section we investigate the effects of interface

thickness on the shrinkage kinetics of a small grain by

comparing the phase field results with those given by the

von Neumann–Mullins expression [23]. To accomplish this

task, dA/dt was measured throughout the entire simulation

and plotted against the radius normalized by the interface

thickness. The rate of area change is then normalized by

the growth rate obtained from the von Neumann–Mullins

equation, Eq. 12 (denoted as dA*/dt). This is easily done

since the number of sides of the grain simulated is constant

throughout the evolution. In cases where the grain shape is

not circular, an effective grain radius given by
ffiffiffiffiffiffiffiffiffi
A=p

p
is

used. A second series of tests conducted measured the

velocity and curvature of the interface and compared this to

theoretical values as a function of the radius normalized by

interface thickness. This allows for a comparison of

Fig. 1 A example schematic of a seven-sided grain in an isotropic

system where the turning angles around the triple points are

equivalent and equal to p/3
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deviation between theory and simulation between the two

methods as well as further understanding into the effect of

triple point junctions on the shrinkage rate of a grain using

a phase field simulation.

In Fig. 2, we show the initial conditions used for the

two- and five-grain systems on a 1024 9 1024 simulation

cell (for a value of l = 0.1); these figures are the sum-

mation of the square of the order parameters and the non-

white regions correspond to the grain boundaries while the

bulk of the grains is shown in white. Since (for the grains at

the center of the simulation cell) there are no triple junc-

tions in the two-grain case, and four in the five-grain case,

the growth rates for the two cases are given by the corre-

sponding von Neumann–Mullins expressions:

dA

dt
¼ ð1Þð2Þp

3
4� 6ð Þ � �4:19; ð13Þ

dA

dt
¼ ð1Þð2Þp

3
0� 6ð Þ � �12:57: ð14Þ

The phase field models we are using are basically Allen–

Cahn equations that describe the motion of antiphase

domain boundaries. Allen and Cahn [24] showed that in

this case the velocity of the boundary is independent of the

boundary energy and dependent only on the product of the

interfacial mobility and the gradient energy coefficient.

Thus the velocity of the grain should be independent of l,

since l only varies the thickness of the boundary. The

mean curvature, H, of the grains and the velocity of the

boundary are calculated numerically at the centers of the

sides of the grain, with normals pointing away from the

centers of the simulation cells. The mean curvature is

calculated and then interpolated to the point at which

g = 0.5. The velocity of the interface is calculated by

tracking the evolution of the g = 0.5 level curve through a

cubic spline interpolation [25]. Note that R = 1/H holds

only for the two-grain case where the central grain is cir-

cular. Finally, the interface thickness was calculated along

the h10i direction, which is normal to the interface, and is

the distance over which the order parameter changes from

0.10 to 0.90. This is shown schematically in Fig. 3 by

plotting the variation of two-order parameters through the

interface for two different values of l and determining the

thicknesses, T.

The interface thickness, T, is useful for calculating the

grid spacing necessary to obtain a specific number of points

through the interface, Ipts. For example using a grid spacing

of Dx = Dy = 1 with l = 0.25 yields Ipts = 11. When

comparing this to the analytical result given by Moelans

et al. [6], albeit with a different method used to calculate

the interfacial thickness, the results presented here for the

dependence of thickness on l are in good agreement. By

assuming the thickness calculated by the different methods

in the two papers are linearly related the thickness pre-

sented here is a factor of 1.35 times thicker than in the

article by Moelans et al. [6]. This comparison is possible

because they use the same bulk-free energy to within a

constant of the bulk-free energy used here. Using this result

in their analytical expression and accounting for the dif-

ferent definitions of the gradient energy coefficient gives

the following:

T ¼ 1:348

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð Þ 2ð Þjp

l

s
¼ 5:39ffiffiffi

l
p : ð15Þ

The factor of 1.35 was numerically calculated from the

measurements of the interface thickness in 2D simulations,

but Eq. 15 can also be analytically computed in 1D. Both

1D analytical and 2D simulation methods yield nearly

identical equations for the thickness. Therefore the

dependence of the thickness on interfacial curvature is

small.

Since the grains grow according to Eq. 9, the GB

velocity is proportional to the GB energy so we take

r = 2jp [24, 26]. In Fig. 4, we show the boundary velocity

divided by the mean curvature and normalized by -Lr

Fig. 2 Initial conditions for a two-grain and b five-grain geometries

in 2D
 0
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 0  5  10  15  20  25

η

X

µ=1.00
µ=0.25

Fig. 3 Interface thickness, T, as a function of position for two values

of l
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(denoted as V*/H) as a function of R/T. It is clear that for

large grain sizes the velocity divided by the mean curvature

is indeed a constant and is equal to -Lr = -L(2jp) = -2,

since jp = 1 in the calculations. When comparing this

result to the phase field simulations as shown in Fig. 4 we

see that the simulation and sharp interface results are in

good agreement for R/T [ 6 where Ipts = 11. When R� T

there is 1 and 5% error for when Ipts = 11 and Ipts = 6,

respectively. One interesting result to note is that for small

grain sizes the five-grain system curve deviates downward

from the analytical result, whereas the two-grain system

curve deviates upward. In the two-grain case it appears that

the velocity of the interface increases faster than the ana-

lytical result since the geometry of the grain and thus

curvature of the interface is completely defined for a spe-

cific radius of the grain. In order to help explain what is

occurring in the five-grain case, when R/T \ 6, we exam-

ine the velocity and curvature of the interface. The velocity

is relatively constant until R/T \ 4 where the velocity

begins to increase steadily. This is also true of the curva-

ture, H, where the rate of curvature change begins to

sharply accelerate when R/T \ 4. As R=T!0 the curvature

increases faster than the velocity of the interface. This is a

result of the triple point junctions moving faster than the

sharp interface theory predicts.

In Fig. 5, the normalized rate of change of area, dA*/dt,

is plotted for the two- and five-grain systems for varying

values of Ipts. When Ipts C11 the curves overlap showing

that there is nearly no effect of increasing the number of

points through the interface beyond 11. A second point to

note is that as R/T increases the results converge to the

sharp interface limit. When R�T the error associated with

Ipts = 4, Ipts = 6, Ipts = 11 for the two-grain system is 3.5,

1.4, 0.4%, respectively. For the five-grain system using the

same number of interface points there is 5.0, 1.9, 1.0%

error. Thus the presence of triple point junctions appears to

increase the error slightly when comparing it to a system

with the same number of interface points and no triple

point junctions. These errors are similiar to those reported

in the previous papers [6, 17, 26]. The presence of these

errors results in shifting the V*/H and dA*/dt asymptotic

values toward lower values (corresponding to a more

positive un-normalized shrinkage rate) than what the the-

ory predicts and as a result has been shown to slow the

shrinkage rate of the grains in this study. Furthermore,

when R=T!0 the kinetics deviate from the von Neumann–

Mullins sharp interface limit. Thus, using Fig. 5 it is pos-

sible to choose the thickness of the interface needed to

yield an accurate value of the interface velocity as given in

the phase field model.

Consistent with the predictions of sharp interface theory

of the Allen–Cahn equations employed in these simulations

we find that the interface parameter, l, can be modified

without it affecting the kinetics of boundary motion.
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Fig. 4 Velocity divided by

grain boundary curvature along

h10i, normalized by -Lr,

plotted against the radius of the

grain, normalized by the

thickness of the interface, for

two-grain and five-grain

systems where a Ipts = 11 and

b Ipts = 6
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Therefore one is free to use either l, the grid spacing, or a

combination of the two in order to change the number of

points through the interface independent of the resulting

output. This is why Ipts is used in Fig. 5. To be sure that one

is examining only the influence of the thickness of the

boundary on the interface evolution kinetics a sufficient

number of points through the interface must be present in

order to accurately represent the order parameter profile

through the interface. In this study, it was found that Ipts

C 11 yields converged solutions, however, employing

Ipts = 6 yields reasonable values that, depending upon the

application, may be acceptable.

Effect of triple point junctions coupled with boundary

thickness

Moelans et al. [6] finds that R/T should be greater than 3 to

be in the converged limit, where T is defined by Eq. 15.

However, to calculate the minimum value of R/T required

for convergence we examined both system geometries, as

shown in Fig. 6, and used the system with largest deviation

from theory. Then allowing for a tolerance of up to 10%

error in the deviation from von Neumann–Mullins law

using Fig. 5, we find that R/T should be greater than 2 to be

in the converged limit, which is very close to that found by

Moelans et al. [6]. One can use a more or less stringent

criteria for convergence depending upon the degree of

precision required for a calculation, but for the context of

this paper R/T \ 2 is defined to be in the unconverged

limit. With this definition one can then calculate a rough

estimate for the discretization of the simulation domain

necessary to achieve a desired accuracy while using

experimental data in the simulations. Assuming that all

grains are approximately square-like and that they tessel-

late the given area, a simple calculation yields an estimate

of the maximum number of grains in a converged system.

For a 1024 9 1024 domain with Ipts = 11, and using a R/T

cutoff value of 2, a maximum of 541 grains can be

employed in the phase field calculation. However, as grains

coarsen, if there are a large number of grains that are near

the cutoff value then as the system continues to evolve the

kinetics could substantially deviate as more grains shrink

below the threshold value. Therefore the grain size distri-

bution should also be such that the average-sized grain is

sufficiently larger than the cutoff value for converged

calculations to insure that a significant number of small

grains satisfy the criterion. Depending upon the tolerable

error it may then become necessary to parallelize systems

among multiple processors or implement some type of

algorithm to reduce processor workloads and memory

resources [18–22].

Examining the five- and two-grain systems, we can also

identify the effect triple point junctions have on ideal

kinetics of grain boundary motion in the phase field

method. Since the triple junction is not sharp in the phase

field model, its diffuseness could, in principal, affect the

motion of the boundaries. From Fig. 6, it is clear that the

presence of triple point junctions increases the R/T value at

which the numerical results converge with theory. In cases

where the boundaries are sufficiently thin relative to the

size of the grain, so that agreement with von Neumann–

Mullins is obtained, no triple point junction drag is

observable. However, in the unconverged limit, when

R/T \ 2, the presence of triple point junctions actually

increases the grain shrinkage rate. Furthermore, when

considering Figs. 4 and 6, both indicate that the accelerated

shrinkage rate of small four-sided grains supports the

observation that triple junctions enhance the shrinkage rate

of small grains.

Effect of misorientation/anisotropy on kinetics

and morphology

In this section, we benchmark on the accuracy of the

misorientation in 1D as a function of points through the

interface. We continue to benchmark the modified model,

by varying misorientation and anisotropy parameter values,

in 2D. Finally, we present some preliminary results from

our simulations on 3D systems in which the GB energy is

dependent both on the misorientation and the anisotropy.

For all the results below the modified model for mis-

orientation and anisotropy was used with a value of

Dx = Dy = j0 = 1 and ciso = -5 and caniso = 15 except

when explicitly stated otherwise. Unlike the previous iso-

tropic case, the thickness of the interface can now vary

with misorientation between grains and the direction of the

normal taken along the interface due to the underlying

anisotropy. We report the values of Ipts along the h10i
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Fig. 6 dA/dt normalized by von Neumann–Mullins for 1024 9 1024

two-grain and five-grain systems where Ipts = 11

2212 J Mater Sci (2009) 44:2206–2217

123



directions. In Fig. 7 the GB energy is calculated for a 1D

system with a flat interface between two grains and plotted

against the misorientation, in degrees, between those

grains. This is done following the procedure outlined by

Cahn and Hilliard [27]. We normalize r by its maximum

value, r*. The values of the GB energy are for the case

when there is no anisotropy due to the orientation of the

plane GB, or the term cijkl
p is zero. This procedure is then

repeated with various numbers of points through the

interface where the values reported on the legend of Fig. 7

correspond to the misorientation when hpq = 0. As hpq

increases so do the number of points through the interface.

Thus the maximum error, when hpq = 0 and Ipts = 4, is

approximately 0.3%, when using Ipts = 54 as the appro-

priately resolved interface. This demonstrates that good

accuracy of the GB energy is achievable in 1D with only

four points through the interface. Furthermore, as the

misorientation increases from zero and reaches 45� the GB

energy changes by 15% in a linear manner.

Next 2D systems were employed to measure both the

kinetics and morphology of a grain during its evolution

from an initially circular grain. The two-grain system

shown in Fig. 2a is used on a 512 9 512 grid along with a

Dt = 0.001 due to the increased timestep restriction as a

result of the fourth derivatives calculated in the evolution

equation [18]. A value of l was chosen (l = 0.25 which

correlates to Ipts = 11 in the isotropic case) such that the

number of the points through the interface would suffi-

ciently resolve the kinetics based on the results from the

previous sections. The effect of misorientation between

grains is shown in Fig. 8 for when ciso = -5 and

caniso = 15. For low angle misorientations the two grains

roughly favor the same interfaces (in this case the {11})

and therefore the middle grain appears faceted. However,

at a misorientation of 45� one grain favors the {10}

interfaces, whereas the other favors the {11}. The result is

that the grain shape appears more isotropic as the misori-

entation approaches 45�. The reason for this occurs is

because each gradient energy tensor is rotated to the

computational frame of reference. Therefore when simu-

lating a polycrystalline material in the limit where

misorientation between grains is small, such as a textured

material, the anisotropy will be clearly evident with the

creation of triple point junction angles between grains such

that the specified interfaces are favored. In the other limit,

in a randomly oriented polycrystalline sample, the growth

will more closely resemble that of an isotropic simulation,

than in the previous case.

An advantage of this model is that the parameter caniso

can simply be increased or decreased to fine tune the

amount of anisotropy desired for a particular system. In

order to observe this effect we next keep the misorientation

constant at 1� and the anisotropy parameters, caniso and ciso,

are varied as shown in Fig. 9. By examining Figs. 8 and 9

it is clear that values of caniso \ 0 have a minimum energy

along the h10i and therefore favor {10} interfaces while

values of caniso [ 0 are the reverse scenario and favor {11}
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Fig. 7 Normalized grain boundary energy of a two-grain system as a

function of the misorientation angle across the boundary for different

number of interface points

Fig. 8 Anisotropy parameters held constant at caniso = 15, ciso = -5 while misorientation between the grains is set to a 1�, b 22.5�, and c 45�
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interfaces [15]. Since we measure the gradient energy

tensor with respect to the crystallographic axes of each

grain, a rotation of 45� of Fig. 9b is identical to Fig. 8a

since the magnitude of caniso is fixed. Furthermore, an

additional comparison between Figs. 8a and 9c shows the

amount of anisotropy, determined by caniso, is roughly

equivalent in both pictures. The values chosen in this

article show a moderate amount of anisotropy but these can

be modified such that sharp corners will develop [18].

Depending upon if one transverses along the h10i or the

h11i the thickness of the interface and associated number

of points through the interface will vary and will either be a

minimum or maximum along those two directions. The

ratio of the thickness along the two directions is dependent

on the values chosen for caniso and ciso in the two grain

case. When there is more than one grain bordering another

grain then the interface thickness is also dependent on the

misorientation between the nearest neighbor grains. For the

isotropic systems in the previous sections the interface

thickness was constant and independent of direction.

However, since this is no longer the case more care must be

taken in picking an appropriate interfacial thickness used in

determining the point at which deviation from the limit of

dA/dt occurs when R �T. The interface thicknesses of all

the anisotropic systems are calculated along the h10i and

along the h11i. Then the smaller of the two thicknesses is

used to normalized the effective grain radius in order to be

conservative in the measurement of the minimum R/T

value for which a particular deviation from the model

occurs. As in the case of the five-grain system, shown in

Fig. 2b, we employ the same effective grain radius,
ffiffiffiffiffiffiffiffiffi
A=p

p
;

in all the simulations presented in this section. Then the

growth rates of the various systems discussed previously

are measured and plotted in Figs. 11 and 12. In Fig. 10 the

anisotropy parameters are held at constant value of

ciso = -5 and caniso = 15 and the misorientation between

the grains is varied from 1, 22.5, and 45�. In Fig. 11 the

misorientation between the two grains is held constant at 1�

and the anisotropy parameters are varied as shown in the

legend of the figure. We report the un-normalized values of

the growth rates of the grains due to the lack of sharp-

interface results for this anisotropic model. Thus the curves

Fig. 9 Misorientation between grains is held constant at 1� while anisotropy parameters are set to a caniso = 0, ciso = 5, b caniso = -15,

ciso = 15, and c caniso = 15, ciso = 5
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Fig. 10 dA/dt as a function of misorientation between grains in a

two-grain system, where caniso and ciso are held constant
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are not expected to converge on each other. The most

obvious result is that the area of the grain decreases linearly

with time when R� T: In all the 2D anisotropic systems

presented in this section the same type of deviation

behavior is clearly observable for when R/T \ 2 as is for

the isotropic systems, and slight deviations from a constant

dA/dt are visible up to R/T &4. From Fig. 10 we observe

that when increasing the misorientation between the grains

the shrinkage rate of the middle grain can be increased by

up to 33%. Furthermore, comparison of dA/dt between

these various systems in Fig. 11 yields the result that the

shrinkage rate of the middle grain is faster the more posi-

tive the value of ciso or caniso. Since the corresponding

dA/dt curve of the middle grain decreased when caniso \ 0

the more negative the value of caniso the slower the

shrinkage rate, which is in agreement with the previous

conclusions. This is because the grain boundary energy is

higher for positive values of ciso and caniso, resulting in a

faster shrinkage rate, and grain shrinkage rate and bound-

ary energy is lower when those terms are negative. Due to

the different growth rate, dA/dt, of the grains the pictures

shown in Figs. 8 and 9 are taken at different timesteps

where the area of the center grains are equivalent.

The effect of these parameters on interface thickness are

now investigated. When varying the misorientation between

the grains from 1 to 45� the thickness of the interface

increases by 5% along the h10i and increased by 23% along

the h11i, where the corresponding values of interface points

increase from 13 to 14 along the h10i and from 8 to 10 along

the h11i. Next, we apply the same analysis for the effects of

changing caniso and ciso while holding the rotation constant at

1� between grains. Keeping ciso = 5 and changing caniso

from 0 to 15, the value of Ipts along h10i increases by 17%, a

respective change of Ipts from 12 to 14. When caniso = 15

and increasing ciso from -5 to 5 the value of Ipts changes

from 13 to 14. Thus it appears that for a positive value of

caniso, or the more positive a value for ciso, the larger the

number of interface points measured along the h10i. Then

when setting caniso = -15 and ciso = 15 the number of

interface points dropped to 11, and thus it can be concluded

that the more negative the value of caniso the lower the value

of Ipts measured along the same direction. Through careful

analysis of Figs. 8a and 9c, which both have the same value

of caniso but different values of ciso, it reveals different

interfacial thicknesses. The interface thickness is greater in

Fig. 9c, therefore one can conclude that both parameters,

caniso and ciso, together control the thickness of the interface.

We show that the method presented can be easily

extended to three-dimensions by the following example

simulation. In Fig. 12, we show the microstructure from a

3D model system. The simulations are carried out on a 200

9 200 9 200 grid, with three distinct grains (a portion of

which—a cube of 140 9 140 9 140—is shown in the

figures). Figure 12a–c shows the central grain at t = 10,

Fig. 12 Preliminary 3D results for an anisotropic three-order parameter system
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with and without the top and bottom grains. Figure 12d

shows the central grain at t = 60 and Fig. 12e shows the

central grain at t = 110. The h100i directions of the central

grain are oriented along the computational frame of ref-

erence, while the top capping layer is rotated by 1� and the

bottom one by 45� about the z-axis.

For this 3D simulation, we have made the boundary

energy dependent both on the misorientation across the

boundary, and the planes of the grains that make up the

boundary (anisotropy). More specifically, the boundary

energy increases with increasing misorientation, and the

anisotropy in the GB energies is such that the {111}

boundaries are preferred compared with {100} boundaries.

For the numerical values that we have used in these sim-

ulations, for a given misorientation, the boundaries made

up of {111} planes have an energy that is smaller by 4%

than boundaries made up of {100} planes. In addition, the

upper boundary with a misorientation of 1� across has an

energy that is smaller by nearly 6.5% than the lower

boundary with a misorientation of 45�.

At the beginning of the simulation, at t = 10 for

example (Fig. 12c) the central grain is near spherical, and

is symmetric about the center; however, as the micro-

structure evolves, the grain shape becomes asymmetric.

This asymmetry is determined both by the misorientation

across the boundary and the anisotropy for any given

misorientation. For example, in Fig. 12e, where the shape

of the central grain at t = 110 is shown, the asymmetry in

the shrinkage rate between the top and bottom parts of the

grains is directly related to the misorientation across the

two parts (1 and 45�, respectively, which translates to

slower and faster shrinkage rates). In addition, for the top

boundary, since both the grains prefer {111} or near {111}

orientations, the boundary has noticeably lower mean

curvature for orientations that are near {111}. On the other

hand, at the bottom boundary, one grain prefers {111} and

the other {100}; hence, the boundary structure that result is

a compromise between the two, and in fact is more roun-

ded. Thus, even in highly anisotropic systems that show

faceted boundaries for small misorientations, the higher

misorientation across a boundary can (and does) mask the

anisotropy resulting in more smoother and rounded

boundaries.

Conclusions

We have compared the results of 2D phase field simula-

tions with both the von Neumann–Mullins result and

Allen–Cahn sharp-interface asymptotics to identify the

range of parameters for which the results from the phase

field simulations converge to those of sharp interface cal-

culations. We find that to obtain an agreement to within

10% with the sharp-interface and von Neumann–Mullins

predictions of the kinetics of GB motion at least six mesh

points through the interface are required along with inter-

face thicknesses that are at least a factor of 2 smaller than

the radius of curvature of the GB. When simulating large

systems of grains, these criteria must be satisfied by the

majority of the grains in the system. A model for grain

growth has been developed that accounts for all five

degrees of freedom of the grain boundary energy. It was

observed that for a constant anisotropy in the GB energy,

the larger the misorientation angle between grains the

faster the shrinkage rate and thicker the grain boundary.

Both the GB thickness and migration rate, through the

variation in the anisotropic GB energy, were found to

depend on the parameters characterizing the gradient

energy tensor. Finally, preliminary results on 3D simula-

tions have been presented in systems with both

misorientation-dependent and anisotropic boundary ener-

gies indicating that both misorientation and anisotropy

have a strong influence on the shapes of the growing/

shrinking grains.
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